本計畫的主題是對於一個具有不確定參數的狀態空間系統,研究其強健最小相位性質。利用線性分式轉換的方法,求出不確定參數的許可範圍,使得系統保有最小相位的特性。這範圍是以結構化奇異值來表示的。線性分式轉換法降低了計算m 值的矩陣大小,改善計算量。本研究方法可應用在proper及strictly proper線性不確定連續及離散系統。
This plane is aimed to study the minimum phase robustness of a state-space system with parametric uncertainties. A tolerable margin in terms of the structured singular value is given for uncertain parameters to guarantee minimum phase property of the system. By the linear fractional transformation (LFT) methodology, the matrix sizes involved in -analysis are reduced significantly to improve computational burden. The approach can be applied to the proper and strictly proper uncertain continuous/discrete-time linear systems.