本計劃是對於一個具有不確定參數的線性離散時延奇異系統,研究其強健性,包括正則性、因果性及穩定性。結構化及非結構化不確定性皆有討論。利用線性分式轉換(LFT)的架構及保護映射理論,本計劃提出一個將強健性問題轉換成結構化奇異值分析問題的系統化方法,求出不確定參數的界限條件,以結構化奇異值來表示,使得系統保持以上三種性質的強健性。
In this project, we study robust regularity, causality and stability properties of linear discrete time-delay singular systems. Assume that the nominal systems are regular, causal and stable, some conditions for guaranteeing the three properties subjected to structured and unstructured parametric uncertainties are proposed. Based on the LFT methodology and guardian map theory, a systematic approach which converts the robustness problem to a -analysis problem is proposed.