English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26353/26950 (98%)
Visitors : 11215760      Online Users : 375
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ksu.edu.tw/handle/987654321/6424

    Title: 高互動型Honeypot風險控管之研析
    The Study on Risk Management for High Interaction Honeypot
    Authors: 王平
    Keywords: 誘捕罐
    Risk analysis
    Intuitionistic Fuzzy Set
    Fuzzy ranking
    Date: 2007-07-31
    Issue Date: 2009-12-30 13:57:01 (UTC+8)
    Abstract: 誘捕網路系統(Honeynet) 可有效降低IDS (Intrusion Detection System) 的高誤報率。透過對駭客行為觀察與病毒的特徵分析,誘捕網路系統可對攻擊事件發出早期警告,提供網路更堅實的保護。然而,駭客亦發展工具以反偵測、破壞,並嘗試加以佔領誘捕網路系統,對其他網路發動攻擊。傳統的風險分析方法著重於危害事件機率的計算及金錢的損失;事實上,面對網際網路不斷變化的危害事件,管理者通常無法蒐集充足的資訊,以分析誘捕網路系統的弱點,進行威脅事件機率的估算。因此本研究假設在缺乏完整的資訊情況,針對誘捕網路系統,提出一個模糊風險分析模式。其運用直覺式模糊集合(Intuitionistic Fuzzy Set, IFS)及模糊排序(fuzzy ranking)指標,發展一套以自然語言基礎的多準則風險分析模式,動態研判誘捕系統的風險等級。
    Honeynet has successfully employed to decrease the false-alarm rate of IDS. To effectively provide an early alarm of dangers in attack events for protecting the security of organizations, Honeynet is designed to capture and analyse the hacker behaviour and virus signature. However, hackers also develop the anti-honey techniques and tools to detect, destroy and compromised against Honeynet for attacking the other networks. In fact, it is quite difficult for users to collect adequate events to estimate the full vulnerabilities and probability of threats in the Internet, due to the rapid change of the emerging malicious attack and the new computer’s vulnerabilities. Therefore, a fuzzy risk assessment model is developed to evaluate the risk of Honeynet under incomplete information. The Intuitionistic Fuzzy Set (IFS) and fuzzy ranking index is introduced to form a multiple criteria decision-making analysis model using natural language for assisting managers to estimate its risk rank.
    Appears in Collections:[資訊管理系所] 研究計畫

    Files in This Item:

    File Description SizeFormat
    952219E168001.pdf801KbAdobe PDF324View/Open

    All items in KSUIR are protected by copyright, with all rights reserved.

    ©Kun Shan University Library and Information Center
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback