English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27237/27833 (98%)
Visitors : 17955151      Online Users : 358
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ksu.edu.tw/handle/987654321/6222


    Title: 多準則決策方法應用於構建全動態交通號誌控制模式之研究
    The Building of Traffic-adaptive Signal Control Model by Applying Multi-Criteria Decision Method
    Authors: 何志宏
    石家豪
    蔣封文
    Keywords: 全動態號誌控制
    多準則決策
    智慧型運輸系統
    交通控制
    Traffic-adaptive Signal Control
    Multi-Criteria Decision
    ITS
    Traffic Control
    Date: 2009-07-31
    Issue Date: 2009-12-29 16:43:06 (UTC+8)
    Abstract: 處身於「智慧型運輸系統 (Intelligent Transportation Systems, ITS)」在全球蓬勃發展的今日,其中的「先進交通管理系統(Advanced Transportation Management System,簡稱ATMS)」已成其首要的發展基礎;而ATMS核心之交通號誌控制策略的研發與應用,現階段係以具有逐秒決策功能與即時控制潛力的全動態(或稱為適應性或實時自適應)號誌控制模式成為最新之發展趨勢。有關此領域之研究國內最早係始於民國78年間由成大自主性之研究發展與實測,新近則為由交通部主導於民國92年起至95年為止,為期四年的研發與實測計畫;其中已陸續完成了全動態控制邏輯模式之開發、路口設備整合實測以及運作績效驗證與成本效益評估等作業,在在證明其具有優良的運作效益。惟現有之全動態交控模式仍受原設系統控制目標之影響,而呈現出系統停等延滯下降但停等百分比提升的交互損益現象。故為求能進一步提升模式運用之彈性並因得以地制宜,以求符合用路人之習慣與各地方政府主管單位之需求起見,本研究係針對全動態交控模式之系統控制目標進行深入探討,亦即在原有的停等車隊總延滯為最小的單一目標外,再納入不同的控制決策評量要素(如:停等百分比、燃油消耗、空污排放等),並應用多準則決策方法中的層級分析法(Analytic Hierarchy Process,簡稱為AHP法)及TOPSIS、ELECTRE法進行各決策準則權重之制訂及評估值標準化作業,藉以發展出更能兼顧各方需求的即時性號誌控制模式,如此將可大幅提昇交控模式對於不同交通環境與用路人需求的適應性與可靠度,俾利於我國後續在全動態交控模式領域之應用與推廣空間。本研究經模擬分析結果後發現,全動態控制模式在納入多準則評估指標後,各項評估指標將呈現一定程度的交互損益,原本模式所考量之路段平均旅行延滯時間將會有所提昇,而在平均路段停等百分比、燃油消耗及空污排放方面,則會適度的下降。此外,本研究所提出之多準則綜合績效指標,其各項評估準則權重值亦可依應用上之不同需要,按其重要程度由使用者自行做適度的配置,藉以獲得更為符合實際需要的運作成效。
    In recent years, the Intelligent Transport Systems (ITS) were developed all over the world and the Advanced Transportation Management Systems (ATMS) has become its core part. In Taiwan, traffic congestion phenomena are often occurred at traffic peak hour because of the excess traffic demand. To resolve these traffic congestion and safety problems, traffic-adaptive signal control strategy is then appeared and is worked by using advanced technologies, such as computer and wireless communication, to enhance the transport function of existing road capacities. In current very complicated traffic environments, the traffic-adaptive signal control system has demonstrated it’s intelligence and capability through previous multi-year R&D and validation projects. By using advanced detector technologies, traffic-adaptive signal control model can take traffic flow information as basic input data to optimize the intersection signal timing plan online real time for a short near future period. It can adjust the green phase length and therefore reduce the congestion due to unreasonable green phase allocations, and achieve several objectives, such as efficient road use, minimum stopped time and minimum delays, etc. This research aims to apply the “Multi-Criteria Decision Method” (such as AHP, TOPSIS, ELECTRE etc.) to revise the existing single objective, i.e. average vehicle delay, of the domestic traffic-adaptive signal control model and try to introduce no. of stops and fuel consumption or even gas emission for any signal system, as a whole, as new control targets. Statistical analysis has been done following six simulation runs in order to find out the most appropriate set of control objectives for improving the control performance of current version of traffic-adaptive signal control system. All the research findings can be served as control strategy alternatives by local government officials to further implement said control system in the near future.
    Appears in Collections:[房地產開發與管理系所] 研究計畫

    Files in This Item:

    File Description SizeFormat
    972221E168037.pdf580KbAdobe PDF822View/Open


    All items in KSUIR are protected by copyright, with all rights reserved.


    本網站之所有圖文內容授權為崑山科技大學圖書資訊館所有,請勿任意轉載或擷取使用。
    ©Kun Shan University Library and Information Center
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback