English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26776/27372 (98%)
Visitors : 13722238      Online Users : 253
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ksu.edu.tw/handle/987654321/18384

    Title: 現行排放源地理資訊系統應用於光學雷達遙測系統之研究
    其他題名: Existing Geographic Information of Sources Used in the Study of the Scanning Radar Remote Sensing System
    Authors: 郭皆榮
    Kuo, Chieh-Jung
    Contributors: 許逸群
    Keywords: 光學雷達遙測;Google Earth;空氣污染
    optical radar remote sensing;Google Earth;air pollution
    Date: 2012
    Issue Date: 2013-02-27 17:10:03 (UTC+8)
    Abstract: 近幾年來環保單位不遺餘力加強空氣污染物的監測與控制,對於空氣品質惡化已獲逐年趨緩之成效。現有光學雷達遙測多採全面掃瞄懸浮微粒排放,若能針對固定污染源獲得精準GPS座標定位排放口位置,利用光學雷達遙測具即時之特性可進行長期監控,並結合Google Earth地理資訊系統快速鎖定污染源,將有利稽查人員進行污染情事之稽查與管制。
    本研究利用現有的排放污染源資料庫與Google Earth地理資訊系統進行整合,並援引台灣污染源資料庫(TED4.2版)之工廠製程管道UTM座標,套疊在地理資訊系統Google Earth。篩選臨海、大社及仁武工業區敏感熱區工廠進行現場GPS座標定位後,比對現有排放源區位資料與工廠現場GPS定位資料,研究區域涵蓋臨海工業區51家工廠總共648根煙囪、大社工業區22家工廠122根煙囪、仁武工業區49家工廠49根煙囪及台灣中油股份有限公司煉製事業部高雄煉油廠為59根煙囪。研究顯示部分工廠沿用舊有固定污染源資料庫,並未確實將工廠實際排放管道現況更新。比對排放源區位資料與工廠現場GPS定位結果顯示,管道定位差距遠至28公里,多數排放管道多有數十至數百公尺定位差異。顯示現有之排放汙染源資料庫無法真實呈現並運用在光學雷達遙測上。
    另利用光學雷達遙測進行全域掃描,發現到19處熱區,其中涵蓋一個鋼鐵廠、石化廠以及煉油廠為這工業區可疑懸浮污染源,並利用GPS進入工廠現場定位27處排放管道來進行光學雷達熱區之遙測,結果顯示出煉油廠排放管道P018、P017單日最高濃度分別為17.5及33.9 mg/m3,鋼鐵廠排放管道PC64、PC83及PC33,單日最高濃度分別為64.1 mg/m3、57.1 mg/m3、76.5 mg/m3。
    In recent years, the environmental protection units have continuously strengthened air pollutant monitoring and control, thus are able to slow down the deterioration of air quality. The existing optical radar remote sensing can scan the emission of suspended particles thoroughly. Thus, locating the stationary pollution sources by GPS, using the optical radar remote sensing for real-time and long-term monitoring, and using the geographic information system, Google Earth, to lock in the pollution sources can allow inspectors to check and control pollution conveniently.
    This study integrated the existing pollution source database with Google Earth, and substituted the factory process channel UTM coordinates of Taiwan pollution source database (TED4.2 version) in Google Earth. The sensitive hot zone factories of Linhai, Dashe and Renwu industrial parks were selected and located by GPS onsite. The existing emission source zone data were compared with the onsite GPS location data of factories. The research area covered 51 factories with 648 chimneys in Linhai industrial park, 22 factories with 122 chimneys in Dashe industrial park, 49 factories with 49 chimneys in Renwu industrial park, and 59 chimneys of China Petroleum Corp.’s Kaohsiung Refinery. The results showed that some factories continue to use the existing stationary pollution source database, and have not updated the existing circumstances of emission pipes. According to the comparison between the emission source zone data and the onsite GPS location results of factories, the difference in pipeline positioning is as large as 28 km, and most of emission pipes have a location error of tens to hundreds of meters. Moreover, the pollutant emission source database cannot be presented truthfully or applied to optical radar remote sensing.
    The optical radar remote sensing was used for global scanning, and 19 hot zones were found, including a steel plant, a petrochemical plant and a refinery which are suspicious suspended pollution sources in this industrial park. GPS was used in plants to locate 27 emission pipes for optical radar remote sensing of hot zones. The results showed that the daily maximum concentration of emission pipes P018 and P017 of the refinery is 17.5 and 33.9 mg/m3 respectively, and the daily maximum concentration of emission pipes PC64, PC83 and PC33 of the steel plant is 64.1mg/m3, 57.1mg/m3 and 76.5mg/m3 respectively.
    Appears in Collections:[環境工程系所] 博碩士論文

    Files in This Item:

    File SizeFormat
    ksu-101-G990N013-1.pdf4627KbAdobe PDF264View/Open

    All items in KSUIR are protected by copyright, with all rights reserved.

    ©Kun Shan University Library and Information Center
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback