Kun Shan University Institutional Repository:Item 987654321/17447
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 26776/27372 (98%)
造访人次 : 13737856      在线人数 : 476
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ksu.edu.tw/handle/987654321/17447

    题名: Exploiting principal component analysis in modulation spectrum enhancement for robust speech recognition
    作者: 李詹儀
    关键词: robust speech recognition;modulation spectrum;principal component analysis
    日期: 2011-07
    上传时间: 2012-09-10 14:31:10 (UTC+8)
    摘要: In this paper, we present a novel method to improve the noise robustness of speech features based on principal component analysis (PCA). The PCA process is employed to extract a set of basis spectral vectors for the modulation spectra of clean training speech features. The new modulation spectra of the speech features, constructed by mapping the original modulation spectra into the space spanned by these PCA-derived basis vectors, have shown robustness against the noise distortion. The experiments conducted on the Aurora-2 digit string database revealed that the proposed PCAbased approach, together with mean and variance normalization (MVN), can provide average error reduction rates of over 65% and 12% relative as compared with the baseline MFCC system and that using the MVN method alone, respectively.
    显示于类别:[環境工程系所] 期刊論文


    档案 描述 大小格式浏览次数
    李詹儀-成果呈現.pdf336KbAdobe PDF602检视/开启


    ©Kun Shan University Library and Information Center
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈