English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26353/26950 (98%)
Visitors : 11197246      Online Users : 349
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ksu.edu.tw/handle/987654321/11135

    Title: 運用語氣識別於關鍵詞辨識系統
    其他題名: Apply Emotional Speech Recognition to Keyword Spotting System
    Authors: 李柏毅
    Bo-Yi Li
    指導教授: 黃志賢
    Keywords: 關鍵詞辨認;語音辨識;語氣
    Keyword Spotting;Speech Recognition;Emotional
    Date: 2010
    Issue Date: 2010-10-07 16:13:21 (UTC+8)
    Abstract: 本研究就我們所收集之語氣語料庫及TCC300語音語料庫進行初步的語氣分類與語音辨識建立系統。透過一般語音辨識最常採用之梅爾倒頻譜係數為主之參數表示法與隱藏式馬可夫模型為主之辨識架構下,使用一階段搜尋演算法(one pass search algorithm)完成語氣與語音辨識工作。在語氣辨識部份,我們假設一段時間內的語氣並不全然會穩定維持在特定語氣,所以,我們在一階段搜尋演算法之後,搭配累計各種可能語氣的持續時間長度決策機制,以持續時間最長者,作為語氣辨識之結果。在語氣辨識效能評估上,我們亂數產生了十組訓練與測試語料集合進行實驗,並採用卡方檢定驗證在不同組別之辨識結果趨勢之一致性及不同語氣間之混淆性。在應用系統中,首先會進行語氣辨識並根據辨識之結果選擇語音辨識時所使用之相對應語氣之語音模型進行辨識。在語音辨識上,我們採用關鍵詞辨認(keyword spotting)方式針對展示系統之語音新聞查詢功能辨識出關鍵詞配合辨識出之語氣,回報合適之語音新聞內容並撥放之。
    This study proposed the emotional speech classification and speech recognition system through the collected emotional speech corpus and TCC300 speech corpus. We exploited one pass search algorithm to complete the recognition task of emotion and speech by the used of the MFCC and hidden Markov model-based recognition architecture. In emotional speech recognition, we assumed that the short-time speech emotion may varied, therefore, the mechanism of longest lasting time accumulation of the most possible speech emotion was adopted after one pass search algorithm to obtain the result. To evaluate the performance of emotional speech classification, we generate ten sets of training and test data collections randomly. The chi-square testing was adopted to examine the performance trends among different experiment data sets and the confusion between different emotional speech. After the emotional speech classification, the speech recognition was followed to extract the keywords for the spoken news query. The system listed appropriate spoken news to be ready for playback according the recognized speech emotion and the keywords.
    Appears in Collections:[資訊工程系所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    ksu-99-G970A001-1.pdf2438KbAdobe PDF217View/Open

    All items in KSUIR are protected by copyright, with all rights reserved.

    ©Kun Shan University Library and Information Center
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback